COMMON PRE-BOARD EXAMINATION 2022-23
Subject: MATHEMATICS (STANDARD) -041 CLASS X

MARKING SCHEME

$\mathbf{1}$	B	1
$\mathbf{2}$	C	1
$\mathbf{3}$	D	1
$\mathbf{4}$	C	1
$\mathbf{5}$	A	1
$\mathbf{6}$	B	1
$\mathbf{7}$	A	1
$\mathbf{8}$	B	1
$\mathbf{9}$	A	1
$\mathbf{1 0}$	C	1
$\mathbf{1 1}$	D	1
$\mathbf{1 2}$	B	1
$\mathbf{1 3}$	D	1
$\mathbf{1 4}$	C	1
$\mathbf{1 5}$	D	1
$\mathbf{1 6}$	D	1
$\mathbf{1 7}$	A	1
$\mathbf{1 8}$	A	1
$\mathbf{1 9}$	B	1
$\mathbf{2 0}$	A	1
\mathbf{y}	A	1

21	SUBTRACTING THE EQN $86 \mathrm{X}-86 \mathrm{Y}=86$ $\mathrm{X}-\mathrm{Y}=1$ ADDING THE EQN $\begin{aligned} & 348 \mathrm{X}+348 \mathrm{Y}=1740 \\ & \mathrm{X}+\mathrm{Y}=5 \end{aligned}$ SOLVING X = 3 $\mathrm{Y}=2$	$\begin{aligned} & (1 / 2) \\ & \\ & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \end{aligned}$		
22	SINCE DE \|	BC, $\mathrm{BD} / \mathrm{AD}=\mathrm{BE} / \mathrm{EC}(\mathrm{BPT})$ SINCE DC \|	AP, $\mathrm{BD} / \mathrm{AD}=\mathrm{BC} / \mathrm{CP}(\mathrm{BPT})$ FROM THE ABOVE TWO EQN $\mathrm{BE} / \mathrm{EC}=\mathrm{BC} / \mathrm{CP}$	$\begin{aligned} & (1 / 2) \\ & \\ & (1 / 2) \\ & \text { REASO } \\ & \text { N(1/2) } \\ & (1 / 2) \end{aligned}$
23.	ANGLE OAP $=90($ RADIUS IS PERPENDICULAR TO THE TANGENT $)$ ANGLE OAB $=90-50=40$ DEGREES TRIANGLE OAB IS ISOSCELES , ANGLE OBA = 40 DEGREES, HENCE ANGLE AOB $=180--80=100$ DEGREES	(1/2) (1/2) (1/2) (1/2)		
24.	ANGLE COVERED $=210$ DEGREES $\begin{aligned} & \text { AREA }=210 / 360 \times 22 / 7 \times 10 \times 10 \\ & =550 / 3 \\ & =183.33 \text { SQ CM } \end{aligned}$ OR	$\begin{aligned} & \hline(1 / 2) \\ & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \end{aligned}$		

\begin{tabular}{|c|c|c|}
\hline \& GIVEN,
\[
\begin{aligned}
\& 5 / 18 \times \pi R^{2}=\frac{\theta}{360} \times \pi R^{2} \\
\& \theta=100 \text { DEGREES }
\end{aligned}
\] \& \begin{tabular}{l}
(1) \\
(1)
\end{tabular} \\
\hline 25. \& \begin{tabular}{l}
(i) \(\tan \theta=\frac{1.5}{3}=\frac{1}{2}\) \\
Hence \(\theta=30^{\circ}\) \\
(ii) \(\sec \theta+\operatorname{cosec} \theta=\sec 30+\operatorname{cosec} 30=2 / \sqrt{3}+2=\frac{2+2 \sqrt{3}}{\sqrt{3}}\) \\
OR \\
\(\operatorname{Cos} \theta+\sin \theta=\sqrt{2} \cos \theta\) \\
Squaring both sides
\[
\begin{aligned}
\& \operatorname{Sin}^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=2 \cos ^{2} \theta \\
\& \quad \sin ^{2} \theta-\cos ^{2} \theta+2 \sin \theta \cos =0 \\
\& (\sin \theta+\cos \theta)(\sin \theta-\cos \theta)=-2 \sin \cos \theta \\
\& \cos \theta-\sin \theta=\frac{-2 \sin \theta \cos }{-\sqrt{2} \cos \theta}=\sqrt{2} \sin \theta
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
(1)
\[
(1 / 2+1 / 2)
\] \\
(1/2) \\
(1/2)
\[
(1 / 2+1 / 2)
\]
\end{tabular} \\
\hline 26. \& \begin{tabular}{l}
Assume \(2+3 \sqrt{5}\) is rational, hence \(2+3 \sqrt{5}=a / b\), where \(a\) and \(b\) are coprime and \(a\) and \(b\) are integers
\[
3 \sqrt{5}=a / b-2
\] \\
\(\sqrt{5}=\left(\frac{a}{b}-2\right) \frac{1}{3}\), wehre LHS is irrational and RHS is rational, which is a contradiction . \\
Hence our asumptionis incorrect \\
Hence \(2+3 \sqrt{5}\) is irrational
\end{tabular} \& 1

1
1 \\

\hline 27. \& | $\begin{gathered} \alpha+\beta=24 \\ \alpha-\beta=8 \end{gathered}$ |
| :--- |
| Solving the above, we get $\alpha=16$ and $\beta=8$ |
| Hence the required quadratic equation is $\begin{aligned} & X^{2}-(16+8) x+16 \times 8=0 \\ & x^{2}-24 x+128=0 \end{aligned}$ | \& 1,1

1 \\

\hline 28. \& | Let speed $=x \mathrm{~km} / \mathrm{h}$ and time taken $=\mathrm{y}$ |
| :--- |
| Hence distance $=x y$ | \& (1/2) \\

\hline
\end{tabular}

	Given, $\begin{aligned} & X y=(x+10)(y-2) \\ & -2 x+10 y=20 \ldots(1) \\ & X y=(x-10)(y+3) \\ & 3 x-10 y=30 \ldots . .(2) \end{aligned}$ Solving 1 and 2 $\mathrm{X}=50 \mathrm{~km} / \mathrm{hr}$ And y $=12$ hours $\text { Hence distance }=12 \times 50=600 \mathrm{~km}$ OR $\mathrm{D}=1500 \mathrm{~km}$ Given, $\frac{1500}{x}-\frac{1500}{(x+250)}=\frac{1}{2}$ $\begin{array}{ll} & \begin{array}{l} \frac{x+250-x}{x^{2}+250 x}=\frac{1}{2 \times 1500} \\ x^{2}+250 x-750000=0 \end{array} \\ (x-750)(\mathrm{x}+1000)=0 & \\ \mathrm{X}=750 \mathrm{~km} / \mathrm{hr} \end{array}$	(1/2) (1/2) (1/2) (1/2) (1) (1) (1/2) (1/2) (1/2) (1/2)
29.	$\begin{aligned} & \mathrm{A}+\mathrm{B}-\mathrm{C}=30^{\circ} \\ & \mathrm{A}-\mathrm{B}+\mathrm{C}=90^{\circ} \\ & \mathrm{B}+\mathrm{C}-\mathrm{A}=60^{\circ} \end{aligned}$ SOLVING $2 \mathrm{~A}=120, \mathrm{~A}=60$ $B=75, C=45$ OR $\begin{aligned} & \text { LHS }=\frac{\tan \theta}{1-\tan \theta}-\frac{\cot \theta}{1-\cot \theta}=\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\sin \theta}{\cos \theta}}-\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\cos \theta}{\sin \theta}} \\ & = \\ & \frac{\frac{\sin \theta}{\cos \theta}}{\frac{\cos \theta-\sin \theta}{\cos \theta}}-\frac{\frac{\cos \theta}{\sin \theta}}{\frac{\sin \theta-\cos \theta}{\sin \theta}}=\frac{\sin \theta}{\cos \theta-\sin \theta}-\frac{\cos \theta}{\sin \theta-\cos \theta}=\frac{\sin \theta+\cos \theta}{\cos \theta-\sin \theta}=\text { RHS } \end{aligned}$	(1/2) (1/2) (1/2) (1/2) $(1 / 2+1 / 2)$

	Similarly angle $\mathrm{SPO}=30$ degrees Angle SOT $=180-60=120 \mathrm{x}$ In triangle SOT, OT $=\mathrm{OS}$, hence isosceles triangle, hence angles are equal, those angles are $180-120 / 2=30$ degrees each Hence angle OTS $=$ angle $\mathrm{OST}=30$ degrees	(1) (1)
31.	$\begin{aligned} & \mathrm{P}(\text { exactly two heads })=3 / 8 \\ & \mathrm{P}(\text { atleast two tails })=4 / 8=1 / 2 \\ & \mathrm{P}(\text { at most two heads })=7 / 8 \end{aligned}$	(1) (1) (1)
32.	Let time taken by one pipe be x hours And time taken by othr pipe is $\mathrm{x}+3$ hours In 1 minute it covers $1 / x$ And other covers $1 / x+3$ Hence in $40 / 13 \mathrm{mts}$ work done is $\frac{1}{x} \times \frac{40}{13}$ And work done by othr pipe is $\frac{1}{x+3} \times \frac{40}{13}$ $\begin{aligned} & \text { Hence } \frac{40}{13 x}+\frac{40}{13(x+3)}=1 \\ & 13 x^{2}-41 x-120=0 \\ & 13 x^{2}-65 x+24 x-120=0 \\ & X=5 \text { or } x=-24 / 13 \end{aligned}$ Hence time taken by one pipe is 5 hours and othr is $5+3=8$ hours OR Let speed of train $=x \mathrm{~km} / \mathrm{hr}$ Time taken $=180 / \mathrm{x}$ hours New speed $=(x+9) \mathrm{km} / \mathrm{hr}$ Hence $\frac{180}{x}-1=\frac{180}{x+9}$ $\mathrm{X}^{2}+9 \mathrm{x}-1680=0$ $\mathrm{X}^{2}+45 \mathrm{x}-36 \mathrm{x}-1680=0$ $X=36 / x=-45$, Hence $x=36 \mathrm{~km} / \mathrm{hr}$	(1/2) (1/2) (1/2) (1) (1/2) (1/2) (1/2) $(1 / 2+1 / 2)$ (1/2) (1/2) (1/2) (1) (1/2) (1/2) (1) $+(1)$

33.	Figure Given To prove Constr. Proof $\frac{2}{6}=\frac{3}{E C}$, hence $E C=9$ units	(1/2) (1/2) (2) $(1+1)$
34.	Volume of liquid in bowl $=\frac{2}{3} \pi r^{3}=\frac{2}{3} \pi \times 18^{3}=3888 \pi \mathrm{~cm}^{3}$ Volume of liquid filled in bottles $=90 \%$ of $3888 \pi \mathrm{~cm}^{3}$ Volume of each cylindrical bottle $-=\pi r^{2} h=9 \pi h c m^{3}$ Volume of 72 cylindrical bottles $=72 \times 9 \pi h=\frac{90}{100} \times 3888 \pi$ $\mathrm{H}=\frac{90 \times 3888}{100 \times 72 \times 9}=\frac{27}{5}=5.4 \mathrm{~cm}$ OR Number of turns $=\frac{12}{0.3}=40$ Circumference of one turn $=2 \times 3.14 \times 5=31.4 \mathrm{~cm}$ Length of 40 turns $=31.4 \times 40=1256 \mathrm{~cm}$ Total length of wire wrapped $=1=1256 \mathrm{~cm}$ Radius of wire $=\frac{0.3}{2}=0.15 \mathrm{~cm}$ Vol of wire $=\pi r^{2} l=3.14 \times 0.15 \times 0.15 \times 1256=88.7364 \mathrm{~cm}^{3}$	(1) $(1+1)$
35.	Class interval frequency Cumulative frequency $0-10$ X X $10-20$ 5 $5+\mathrm{x}$ $20-30$ 9 $14+\mathrm{x}$ $30-40$ 12 $26+\mathrm{x}$ $40-50$ Y $26+\mathrm{x}+\mathrm{y}$ $50-60$ 3 $29+\mathrm{x}+\mathrm{y}$ $60-70$ 2 $31+\mathrm{x}+\mathrm{y}$ Total $\mathrm{N}=40$ $\mathrm{X}+\mathrm{y}=9 \ldots \ldots .(1)$$\text { Median }=1+\frac{\frac{n}{2}-c f}{f} \times h$ Hence $32.5=30+\frac{20-(14+x)}{12} \times 10$	(2) (1) (1)

	$\mathrm{X}=3, \mathrm{y}=6$	(1/2+1/2)
10	(i) $\mathrm{L}=(5,10), \mathrm{B}=(0,7)$ Distance $\sqrt{25+49}=\sqrt{74}$ units (ii) let $\mathrm{K}=(\mathrm{x}, \mathrm{y})$ divides line joining L and B divides in the raio 3:2 $\mathrm{X}=\frac{3 \times 0+2 \times 5}{5}=2, y=\frac{3 \times 7+2 \times 10}{5}=\frac{41}{5} \text {, hence } \mathrm{K}=\left(2, \frac{41}{5}\right)$ (iii) $\mathrm{L}=(5.10), \mathrm{N}=(2,6)$ and $\mathrm{P}=(8,6)$ $\mathrm{LN}=5$ units, $\mathrm{NP}=6$ units, $\mathrm{LP}=5$ units Since LN = LP, it forms and isosceles triangle OR Let the point equidistant from P and L be $(0, \mathrm{y})$ Hence $25+(y-10)^{2}=64+(y-6)^{2}$ $\mathrm{Y}=\frac{25}{8}$, hence the required point is $(0.25 / 8)$	1 1 (1 1/2) (1/2) (1/2) (1) (1/2)
37.	$\begin{aligned} & \text { (i) } a+3 d=1800, a+7 d=2600 \\ & d=200, a=1200 \end{aligned}$ $\text { (ii) } 12^{\text {th }} \text { term }=\mathrm{a}+11 \mathrm{~d}=1200+11 \times 200=34030$ $\text { (iii) } S_{10}=10 / 2(2400+1800)=5 \times 4200=21000$ OR $\begin{aligned} & n / 2(2 \times 1200+(n-1) 200)=31200 \\ & n^{2}+11 n-312=0 \\ & n^{2}+24 n-13 n-312=0 \\ & n=13, n=-24 \\ & n=13 \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & ((1 / 2+1 / 2 \\ &) \\ & (1+1) \end{aligned}$ (1) (1)
38	(i) Difference between height of the lighthouse and building $\begin{aligned} & \tan 60=\sqrt{3}=\frac{60}{A E}, \mathrm{AE}=20 \sqrt{3} \mathrm{~m} \\ & \tan 30=\frac{C E}{A E}=\frac{C E}{20 \sqrt{3}}, \text { hence } C E=20 \mathrm{~m} \end{aligned}$ (ii) Distance between light huse and building $=20 \sqrt{3} \mathrm{~m}$ OR $60: x=\sqrt{3}: 1, \text { hence } x=20 \sqrt{3}$	(1/2) (1/2) (2)

| | Angle of elevation $=\theta, \tan \theta=\frac{60}{20 \sqrt{3}}=\sqrt{3}$, hence $\theta=60^{\circ}$ |
| :--- | :--- | :--- |
| (iii)In triangle $\mathrm{ABD}, \mathrm{BD}=\mathrm{AE}=20 \sqrt{3}$
 Distance from foot of light house to top of building $=\mathrm{AD}=\sqrt{3600+1200}=$
 $\sqrt{4800}=40 \sqrt{3} \mathrm{~m}$ | $(1 / 2)$ |

